Plasticity of Materials
In materials science, plasticity describes the deformation of a material undergoing non-reversible changes of shape in response to applied forces. For example, a solid piece of metal being bent or pounded into a new shape displays plasticity as permanent changes occur within the material itself. In engineering, the transition from elastic behaviour to plastic behaviour is called yield.
Plastic deformation is observed in most materials including metals, soils, rocks, concrete, foams, bone and skin. However, the physical mechanisms that cause plastic deformation can vary widely. At the crystal scale, plasticity in metals is usually a consequence of dislocations. In most crystalline materials such defects are relatively rare. But there are also materials where defects are numerous and are part of the very crystal structure, in such cases plastic crystalline can result. In brittle materials such as rock, concrete, and bone, plasticity is caused predominantly by slip at micro cracks.
For many ductile metals, tensile loading applied to a sample will cause it to behave in an elastic manner. Each increment of load is accompanied by a proportional increment in extension, and when the load is removed, the piece returns exactly to its original size. However, once the load exceeds some threshold (the yield strength), the extension increases more rapidly than in the elastic region, and when the load is removed, some amount of the extension remains.
However, elastic deformation is an approximation and its quality depends on the considered time frame and loading speed. If the deformation behaviour includes elastic deformation as indicated in the adjacent graph it is also often referred to as elastic-plastic or elasto-plastic deformation.
Perfect plasticity is a property of materials to undergo irreversible deformation without any increase in stresses or loads. Plastic materials with hardening necessitate increasingly higher stresses to result in further plastic deformation. Generally plastic deformation is also dependent on the deformation speed, i.e. usually higher stresses have to be applied to increase the rate of deformation and such materials are said to deform visco-plastically.
Mathematical descriptions of plasticity
Deformation theory
An idealized uniaxial stress-strain curve showing elastic and plastic deformation regimes for the deformation theory of plasticity
There are several mathematical descriptions of plasticity. One is deformation theory (see e.g. Hooke's law) where the stress tensor (of order d in d dimensions) is a function of the strain tensor. Although this description is accurate but when a small part of matter is subjected to increasing loading (such as strain loading), this theory cannot account for irreversibility.
Ductile materials can sustain large plastic deformations without fracture. However, even ductile metals will fracture when the strain becomes large enough - this is as a result of work hardening of the material, which causes it to become brittle. Heat treatment such as annealing can restore the ductility of a worked piece, so that shaping can continue.
Flow plasticity theory
In 1934, Egon Orowan, Michael Polanyi and Geoffrey Ingram Taylor, roughly simultaneously, realized that the plastic deformation of ductile materials could be explained in terms of the theory of dislocations. The more correct mathematical theory of plasticity, flow plasticity theory, uses a set of non-linear, non-integrable equations to describe the set of changes on strain and stress with respect to a previous state and a small increase of deformation.
Services: - Plasticity of Materials Homework | Plasticity of Materials Homework Help | Plasticity of Materials Homework Help Services | Live Plasticity of Materials Homework Help | Plasticity of Materials Homework Tutors | Online Plasticity of Materials Homework Help | Plasticity of Materials Tutors | Online Plasticity of Materials Tutors | Plasticity of Materials Homework Services | Plasticity of Materials