Relativity of Simultaneity
Relativity of simultaneity
Two events occurring at different space co-ordinates x1 and x2 in an inertial frame S, are said to be simultaneous, if they occur at the same time t. The time t is recorded by two synchronized clocks fixed at x1 and x2 in S. The same events are observed from another moving Lorentz frame S’ at (x1’, t1’) and (x2’, t2’) respectively. We have,
x1’ = (x1 – vt), t1’ = (t – vx1/c2)
x2’ = (x2 – vt), t2’ = (t – vx2/c2)
We have assumed the case of standard Lorentz transformations. Note that the two events do not occur simultaneously in frame S’, t2’ ≠ t1’, and the time interval is given by,
The simultaneity is therefore not absolute but relative to frame of reference. Two events that occur simultaneously in one frame are not simultaneous in another frame.
Services: - Relativity of Simultaneity Homework | Relativity of Simultaneity Homework Help | Relativity of Simultaneity Homework Help Services | Live Relativity of Simultaneity Homework Help | Relativity of Simultaneity Homework Tutors | Online Relativity of Simultaneity Homework Help | Relativity of Simultaneity Tutors | Online Relativity of Simultaneity Tutors | Relativity of Simultaneity Homework Services | Relativity of Simultaneity